首页> 外文OA文献 >SU(2) and SU(1,1) algebra eigenstates: A unified analytic approach to coherent and intelligent states
【2h】

SU(2) and SU(1,1) algebra eigenstates: A unified analytic approach to coherent and intelligent states

机译:sU(2)和sU(1,1)代数本征态:一种统一的分析方法   连贯和智能的状态

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We introduce the concept of algebra eigenstates which are defined for anarbitrary Lie group as eigenstates of elements of the corresponding complex Liealgebra. We show that this concept unifies different definitions of coherentstates associated with a dynamical symmetry group. On the one hand, algebraeigenstates include different sets of Perelomov's generalized coherent states.On the other hand, intelligent states (which are squeezed states for a systemof general symmetry) also form a subset of algebra eigenstates. We develop thegeneral formalism and apply it to the SU(2) and SU(1,1) simple Lie groups.Complete solutions to the general eigenvalue problem are found in the bothcases, by a method that employs analytic representations of the algebraeigenstates. This analytic method also enables us to obtain exact closedexpressions for quantum statistical properties of an arbitrary algebraeigenstate. Important special cases such as standard coherent states andintelligent states are examined and relations between them are studied by usingtheir analytic representations.
机译:我们介绍了为任意Lie群定义的代数本征态的概念,将其作为相应复Liealgebra元素的本征态。我们证明了这个概念统一了与动态对称群相关的相干态的不同定义。一方面,代数本征态包括Perelomov的广义相干态的不同集合;另一方面,智能态(对于一般对称系统来说是压缩态)也构成了代数本征态的子集。我们发展了一般形式主义并将其应用于SU(2)和SU(1,1)简单Lie组。在两种情况下,都采用了代数本征态的解析表示方法,找到了一般特征值问题的完全解。这种分析方法还使我们能够获得任意代数本征态的量子统计性质的精确闭式。研究了标准相干态和智能态等重要的特殊情况,并使用它们的解析表示来研究它们之间的关系。

著录项

  • 作者

    Brif, C.;

  • 作者单位
  • 年度 1997
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号